Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
2.
Clin Exp Nephrol ; 28(5): 404-408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193991

RESUMO

BACKGROUND: It is well known that kidney injury is vital organ damage in Fabry disease (FD). Renin-angiotensin system (RAS) inhibitors are known to reduce proteinuria in patients with chronic kidney disease (CKD) by dilating the glomerular export arteries and reducing intraglomerular pressure. This improvement in intraglomerular pressure, although lowering the glomerular filtration rate, is thought to prevent renal damage and be renoprotective in the long term. RAS inhibitors may be effective in FD patients with proteinuria to prevent the progression of kidney disease, however, the degree to which they are used in clinical practice is unknown. METHODS: The J-CKD-DB-Ex is a comprehensive multicenter database that automatically extracts medical data on CKD patients. J-CKD-DB-Ex contains data on 187,398 patients in five medical centers. FD patients were identified by ICD-10. Clinical data and prescriptions of FD patients between January 1 of 2014, and December 31 of 2020 were used for the analysis. RESULTS: We identified 39 patients with FD from the J-CKD-DB-Ex including those with suspected FD. We confirmed 22 patients as FD. Half of the patients received RAS inhibitors. RAS inhibitors tended to be used in CKD patients with more severe renal impairment. CONCLUSIONS: This case series revealed the actual clinical practice of FD patients with CKD. In particular, we found cases in which patients had proteinuria, but were not treated with RAS inhibitors. The database was shown to be useful in assessing the clinical patterns of patients with rare diseases.


Assuntos
Doença de Fabry , Insuficiência Renal Crônica , Doença de Fabry/complicações , Doença de Fabry/tratamento farmacológico , Humanos , Masculino , Feminino , Insuficiência Renal Crônica/fisiopatologia , Japão/epidemiologia , Pessoa de Meia-Idade , Adulto , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Adulto Jovem , Bases de Dados Factuais , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Idoso , Adolescente , Taxa de Filtração Glomerular , Sistema Renina-Angiotensina/efeitos dos fármacos
3.
Sci Rep ; 13(1): 18734, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907479

RESUMO

Vesicular transport driven by membrane trafficking systems conserved in eukaryotes is critical to cellular functionality and homeostasis. It is known that homotypic fusion and vacuole protein sorting (HOPS) and class C core endosomal vacuole tethering (CORVET) interact with Rab-GTPases and SNARE proteins to regulate vesicle transport, fusion, and maturation in autophagy and endocytosis pathways. In this study, we identified two novel "Hybrid" tethering complexes in mammalian cells in which one of the subunits of HOPS or CORVET is replaced with the subunit from the other. Substrates taken up by receptor-mediated endocytosis or pinocytosis were transported by distinctive pathways, and the newly identified hybrid complexes contributed to pinocytosis in the presence of HOPS, whereas receptor-mediated endocytosis was exclusively dependent on HOPS. Our study provides new insights into the molecular mechanisms of the endocytic pathway and the function of the vacuolar protein sorting-associated (VPS) protein family.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Animais , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Endossomos/metabolismo , Endocitose , Proteínas SNARE/metabolismo , Fusão de Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
4.
Hum Genome Var ; 10(1): 27, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845262

RESUMO

We report a Japanese patient with tall stature, dolichocephaly, prominent forehead, narrow nasal ridge, mild retrognathia, subcutaneous fat reduction, bilateral entropion of both eyelids, high arched palate, long fingers, and mild hyperextensible finger joints as a case of Marfanoid-progeroid-lipodystrophy syndrome. Genetic investigation revealed a heterozygous variant NC_000015.10(NM_000138.5):c.8226+5G>A in the FBN1 gene. Skipping of exon 65 and escaping nonsense-mediated decay followed by frameshift were experimentally confirmed in the proband's mRNA.

5.
Genes (Basel) ; 14(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37628632

RESUMO

Mucopolysaccharidosis-plus syndrome (MPSPS) is an autosomal-recessive disorder caused by c.1492C>T (p.R498W) in the VPS33A gene. MPSPS is a severe disorder that causes a short lifespan in patients. Currently, there is no specific treatment for patients. The Yakut population is more prone to this disease than others. Diagnosing MPSPS relies on clinical manifestations, and genetic testing (GT) is used to confirm the diagnosis. In this research, we examined two pregnancy cases, one of which involved a prenatal diagnosis for MPSPS. Notably, neither pregnant woman had a known family history of the disorder. During their pregnancies, both women underwent prenatal ultrasonography, which revealed increased prenasal thickness during the second trimester. In the first case, ultrasonography indicated increased prenasal thickness in the second trimester, but a definitive diagnosis was not made at that time. The patient was eventually diagnosed with MPSPS at 11 months of age. On the contrary, in the second case, GT uncovered that the parents were carriers of MPSPS. Consequently, a placental biopsy was performed, leading to an early diagnosis of MPSPS. This study emphasizes the importance of ultrasonography findings in prenatal MPSPS diagnosis. Combining ultrasonography with GT can be a valuable approach to confirming MPSPS at an early stage, allowing for the appropriate planning of delivery methods and medical care. Ultimately, this comprehensive approach can significantly enhance the quality of life of both affected patients and their parents.


Assuntos
Mucopolissacaridoses , Qualidade de Vida , Gravidez , Humanos , Feminino , Placenta , Diagnóstico Pré-Natal , Testes Genéticos
6.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982718

RESUMO

We report a case of an eight-year-old boy with mucopolysaccharidosis (MPS) II with atypical skin lesions of hyperpigmented streaks along Blaschko's lines. This case presented with mild symptoms of MPS such as hepatosplenomegaly, joint stiffness, and quite mild bone deformity, which was the reason for the delay in diagnosis until the age of seven years. However, he showed an intellectual disability that did not meet the diagnostic criteria for an attenuated form of MPS II. Iduronate 2-sulfatase activity was reduced. Clinical exome sequencing of DNA from peripheral blood revealed a novel pathogenic missense variant (NM_000202.8(IDS_v001):c.703C>A, p.(Pro235Thr)) in the IDS gene, which was confirmed in the mother with a heterozygous state. His brownish skin lesions differed from the Mongolian blue spots or "pebbling" of the skin that are observed in MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Masculino , Humanos , Criança , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Iduronato Sulfatase/genética , Pele , Mutação de Sentido Incorreto , Esplenomegalia
7.
Cell Rep ; 40(11): 111349, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103833

RESUMO

Macroautophagy is a bulk degradation system in which double membrane-bound structures called autophagosomes to deliver cytosolic materials to lysosomes. Autophagy promotes cellular homeostasis by selectively recognizing and sequestering specific targets, such as damaged organelles, protein aggregates, and invading bacteria, termed selective autophagy. We previously reported a type of selective autophagy, lysophagy, which helps clear damaged lysosomes. Damaged lysosomes become ubiquitinated and recruit autophagic machinery. Proteomic studies using transfection reagent-coated beads and further evaluations reveal that a CUL4A-DDB1-WDFY1 E3 ubiquitin ligase complex is essential to initiate lysophagy and clear damaged lysosomes. Moreover, we show that LAMP2 is ubiquitinated by the CUL4A E3 ligase complex as a substrate on damaged lysosomes. These results reveal how cells selectively tag damaged lysosomes to initiate autophagy for the clearance of lysosomes.


Assuntos
Macroautofagia , Proteômica , Lisossomos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Hum Genome Var ; 9(1): 26, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879281

RESUMO

Coffin-Siris syndrome (CSS) is a congenital disorder that is characterized by an absent/hypoplastic fifth distal phalanx, psychomotor developmental delay, and coarse facial features. One of the causative genes, ARID1B (AT-rich interactive domain-containing protein 1B), encodes components of the BAF chromatin remodeling complexes. Here, we report a case of a 3-year 8-month-old male with a novel nonsense variant (NM_001374820.1:c.4282C > T, p.(Gln1428*)) in the ARID1B gene, which was identified with whole-exome sequencing. He showed clinical symptoms of cleft soft palate, distinctive facial features (flat nasal bridge, thick eyebrows, and long eyelashes), right cryptorchidism, and hypertrichosis that partially overlapped with CSS. One of the most characteristic features of CSS is absent/hypoplastic fifth distal phalanx. He showed no obvious clinical finding in the lengths of his fingers or in the formation of his fingernails. However, radiographic analyses of the metacarpophalangeal bones revealed shortening of all the distal phalanges and fifth middle phalanges, suggesting brachydactyly. We performed mRNA analyses and revealed that both nonsense-mediated decay and nonsense-associated altered splicing were simultaneously caused by the c.4282C > T nonsense variant. The proband's clinical manifestations fit the previously reported criteria of disease for CSS or intellectual disability with ARID1B variant. Altogether, we suggest that c.4282C > T is a pathogenic variant that causes this clinical phenotype.

9.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628659

RESUMO

Mucopolysaccharidoses (MPS) are rare lysosomal storage disorders (LSD) characterized by the excessive accumulation of glycosaminoglycans (GAG). Conventional MPS, caused by inborn deficiencies of lysosomal enzymes involved in GAG degradation, display various multisystemic symptoms-including progressive neurological complications, ophthalmological disorders, hearing loss, gastrointestinal and hepatobiliary issues, cardiorespiratory problems, bone and joint abnormalities, dwarfism, and coarse facial features. Mucopolysaccharidosis-Plus Syndrome (MPSPS), an autosomal recessive disease caused by a mutation in the endo-lysosomal tethering protein VPS33A, shows additional renal and hematopoietic abnormalities ("Plus symptoms") uncommon in conventional MPS. Here, we analyze data from biochemical, histological, and physical examinations-particularly of blood counts and kidney function-to further characterize the clinical phenotype of MPSPS. A series of blood tests indicate hematopoietic symptoms including progressive anemia and thrombocytopenia, which correlate with histological observations of hypoplastic bone marrow. High urinary excretion of protein (caused by impairments in renal filtration), hypoalbuminemia, and elevated levels of creatinine, cholesterol, and uric acid indicate renal dysfunction. Histological analyses of MPSPS kidneys similarly suggest the extensive destruction of glomerular structures by foamy podocytes. Height and weight did not significantly deviate from the average, but in some cases, growth began to decline at around six months or one year of age.


Assuntos
Oftalmopatias , Doenças Hematológicas , Mucopolissacaridoses , Glicosaminoglicanos/metabolismo , Doenças Hematológicas/complicações , Humanos , Mucopolissacaridoses/genética , Mutação
10.
Brain Dev ; 43(8): 867-872, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33965289

RESUMO

In mucopolysaccharidoses (MPS), spinal cord compression (SCC) resulting from glycosaminoglycan (GAG) accumulation is a critical complication that can cause significant neurological and respiratory morbidities. However, clinically similar disorders such as mucolipidosis types II and III (ML) with SCC have been scarcely reported. Herein, we report four patients with ML who had SCC. Brain MRI revealed progressive spinal canal stenosis and SCC. In addition, T2-weighted high signal changes in the cervical cord were detected in two cases. Severe cases of SCC were detected as early as 1 year of age. All cases had respiratory problems. One case showed severe hypoxia and another, severe sleep apnea. In two cases, respiratory insufficiency and tetraplegia rapidly progressed as SCC progressed. Then, the patients became bedridden and needed artificial ventilation. In addition, two of the four patients died of respiratory failure. The autopsy of one patient revealed a compressed cervical cord and marked dura mater thickening due to GAG accumulation. These findings suggest that the accumulation of substrates in the dura mater caused SCC in the patients with ML. Our cases indicate that SCC is expected to be a common and critical complication of ML and MPS. MRI evaluation of cervical involvements and careful clinical observation are required in patients with ML.


Assuntos
Mucolipidoses/complicações , Compressão da Medula Espinal/etiologia , Adulto , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Criança , Pré-Escolar , Evolução Fatal , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Quadriplegia/etiologia , Respiração Artificial , Insuficiência Respiratória/etiologia , Compressão da Medula Espinal/diagnóstico por imagem , Compressão da Medula Espinal/patologia , Adulto Jovem
11.
Rinsho Shinkeigaku ; 60(8): 543-548, 2020 Aug 07.
Artigo em Japonês | MEDLINE | ID: mdl-32641631

RESUMO

We describe an additional patient with spastic paraplegia 48 (SPG48). A 52-year-old woman with gradually increasing gait disturbance was admitted to our hospital. When she was 47 years old, acquaintances noted a shuffling gait. Gait worsening was evident at 48 years. Spastic gait was apparent at 50, and she required a walking stick at 54. Her elder brother had similar gait disturbance. No consanguinity was known. Neurologic examination at 52 disclosed spasticity and moderate weakness in the lower limbs. Spasticity and brisk reflexes in all limbs. Laboratory studies including HTLV-1 titer detected no abnormalities. MRI demonstrated mild corpus callosum narrowing and prominent anterior periventricular hyperintensities in fluid attenuation inversion recovery images. In limb muscles, electromyography (EMG) showed a chronic neurogenic pattern including reduced interference. Gene analysis identified compound homozygosity in exon 7 of adaptor-related protein complex 5 subunit zeta 1 (AP5Z1), including a novel frameshift mutation, c.1662_1672del;p.Glu554Hfs*15 in the patient, and a heterozygous missense mutation in asymptomatic family members, including her mother, two siblings, and a daughter. The frameshift mutation is considered a pathogenic variant according to American College of Medical Genetics and Genomics standards and guidelines. Based on clinical features, imaging findings and genetic abnormalities, we diagnosed this patient with SPG48. Mutations in AP5Z1, which encodes the ζ subunit of AP-5, underlie SPG48. The AP-5 adaptor protein complex, which is mutated in SPG48, binds to both spastizin and spatacsin. While hereditary spastic paraplegias generally are clinically and genetically heterogenous, SPG48, SPG11, and SPG15 are clinically similar.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Mutação da Fase de Leitura , Paraparesia Espástica/genética , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Feminino , Transtornos Neurológicos da Marcha/etiologia , Genes Recessivos , Homozigoto , Humanos , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Paraparesia Espástica/complicações
12.
PLoS One ; 15(3): e0230156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32134989

RESUMO

Kampo, a system of traditional Japanese therapy utilizing mixtures of herbal medicine, is widely accepted in the Japanese medical system. Kampo originated from traditional Chinese medicine, and was gradually adopted into a Japanese style. Although its effects on a variety of diseases are appreciated, the underlying mechanisms remain mostly unclear. Using a quantitative tf-LC3 system, we conducted a high-throughput screen of 128 kinds of Kampo to evaluate the effects on autophagy. The results revealed a suppressive effect of Shigyakusan/TJ-35 on autophagic activity. TJ-35 specifically suppressed dephosphorylation of ULK1 and TFEB, among several TORC1 substrates, in response to nutrient deprivation. TFEB was dephosphorylated by calcineurin in a Ca2+ dependent manner. Cytosolic Ca2+ concentration was increased in response to nutrient starvation, and TJ-35 suppressed this increase. Thus, TJ-35 prevents the starvation-induced Ca2+ increase, thereby suppressing induction of autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Inanição/metabolismo
13.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936524

RESUMO

Previously, we reported a novel disease of impaired glycosaminoglycans (GAGs) metabolism without deficiency of known lysosomal enzymes-mucopolysaccharidosis-plus syndrome (MPSPS). MPSPS, whose pathophysiology is not elucidated, is an autosomal recessive multisystem disorder caused by a specific mutation p.R498W in the VPS33A gene. VPS33A functions in endocytic and autophagic pathways, but p.R498W mutation did not affect both of these pathways in the patient's skin fibroblast. Nineteen patients with MPSPS have been identified: seventeen patients were found among the Yakut population (Russia) and two patients from Turkey. Clinical features of MPSPS patients are similar to conventional mucopolysaccharidoses (MPS). In addition to typical symptoms for conventional MPS, MPSPS patients developed other features such as congenital heart defects, renal and hematopoietic disorders. Diagnosis generally requires evidence of clinical picture similar to MPS and molecular genetic testing. Disease is very severe, prognosis is unfavorable and most of patients died at age of 10-20 months. Currently there is no specific therapy for this disease and clinical management is limited to supportive and symptomatic treatment.


Assuntos
Mucopolissacaridoses/patologia , Diagnóstico Diferencial , Feminino , Geografia , Humanos , Masculino , Mucopolissacaridoses/epidemiologia , Mucopolissacaridoses/etiologia , Mucopolissacaridoses/genética , Linhagem , Federação Russa , Síndrome
14.
J Med Genet ; 57(4): 245-253, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31712251

RESUMO

BACKGROUND: 3C/Ritscher-Schinzel syndrome is characterised by congenital cranio-cerebello-cardiac dysplasia, where CCDC22 and WASHC5 are accepted as the causative genes. In combination with the retromer or retriever complex, these genes play a role in endosomal membrane protein recycling. We aimed to identify the gene abnormality responsible for the pathogenicity in siblings with a 3C/Ritscher-Schinzel-like syndrome, displaying cranio-cerebello-cardiac dysplasia, coloboma, microphthalmia, chondrodysplasia punctata and complicated skeletal malformation. METHODS: Exome sequencing was performed to identify pathogenic variants. Cellular biological analyses and generation of knockout mice were carried out to elucidate the gene function and pathophysiological significance of the identified variants. RESULTS: We identified compound heterozygous pathogenic variants (c.1097dup; p.Cys366Trpfs*28 and c.2755G>A; p.Ala919Thr) in the VPS35L gene, which encodes a core protein of the retriever complex. The identified missense variant lacked the ability to form the retriever complex, and the frameshift variant induced non-sense-mediated mRNA decay, thereby confirming biallelic loss of function of VPS35L. In addition, VPS35L knockout cells showed decreased autophagic function in nutrient-rich and starvation conditions, as well as following treatment with Torin 1. We also generated Vps35l-/- mice and demonstrated that they were embryonic lethal at an early stage, between E7.5 and E10.5. CONCLUSIONS: Our results suggest that biallelic loss-of-function variants in VPS35L underlies 3C/Ritscher-Schinzel-like syndrome. Furthermore, VPS35L is necessary for autophagic function and essential for early embryonic development. The data presented here provide a new insight into the critical role of the retriever complex in fetal development.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/metabolismo , Anormalidades Craniofaciais/genética , Síndrome de Dandy-Walker/genética , Predisposição Genética para Doença , Comunicação Interatrial/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas/patologia , Animais , Cerebelo/patologia , Anormalidades Craniofaciais/patologia , Síndrome de Dandy-Walker/patologia , Feminino , Comunicação Interatrial/patologia , Humanos , Mutação com Perda de Função/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , Naftiridinas/farmacologia , Fenótipo , Gravidez , Estabilidade de RNA/genética
15.
Hum Genome Var ; 6: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622725

RESUMO

Biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene have been reported to cause two different clinical spectra: short stature with optic nerve atrophy and Pelger-Huët anomaly (SOPH) syndrome and infantile liver failure syndrome 2 (ILFS2). Here, we describe a case of a 3-year-old Japanese boy who presented with fever-triggered recurrent acute liver failure (ALF). The clinical characteristics were considerable elevation of liver enzymes, severe coagulopathy, and acute renal failure. In addition to the liver phenotype, he had short stature and Pelger-Huët anomaly in the peripheral granulocytes. Whole-exome and Sanger sequencing of the patient and his parents revealed that he carried novel compound heterozygous missense mutations in NBAS, c.1018G>C (p.Gly340Arg) and c.2674 G>T (p.Val892Phe). Both mutations affect evolutionarily conserved amino acid residues and are predicted to be highly damaging. Immunoblot analysis of the patient's skin fibroblasts showed a normal NBAS protein level but a reduced protein level of its interaction partner, p31, involved in Golgi-to-endoplasmic reticulum retrograde vesicular trafficking. We recommend NBAS gene analysis in children with unexplained fever-triggered recurrent ALF or liver dysfunction. Early antipyretic therapy may prevent further episodes of ALF.

16.
J Biol Chem ; 293(30): 11809-11822, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853636

RESUMO

Dynamin-related protein 1 (Drp1) constricts mitochondria as a mechanochemical GTPase during mitochondrial division. The Drp1 gene contains several alternative exons and produces multiple isoforms through RNA splicing. Here we performed a systematic analysis of Drp1 transcripts in different mouse tissues and identified a previously uncharacterized isoform that is highly enriched in the brain. This Drp1 isoform is termed Drp1ABCD because it contains four alterative exons: A, B, C, and D. Remarkably, Drp1ABCD is located at lysosomes, late endosomes, and the plasma membrane in addition to mitochondria. Furthermore, Drp1ABCD is concentrated at the interorganelle interface between mitochondria and lysosomes/late endosomes. The localizations of Drp1ABCD at lysosomes, late endosomes, and the plasma membrane require two exons, A and B, that are present in the GTPase domain. Drp1ABCD assembles onto these membranes in a manner that is regulated by its oligomerization and GTP hydrolysis. Experiments using lysosomal inhibitors show that the association of Drp1ABCD with lysosomes/late endosomes depends on lysosomal pH but not their protease activities. Thus, Drp1 may connect mitochondria to endosomal-lysosomal pathways in addition to mitochondrial division.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Dinaminas/análise , Camundongos , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo
17.
J Hum Genet ; 63(6): 699-706, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29615819

RESUMO

Krabbe disease, one of the autosomal-recessive lysosomal storage disorders (LSDs), is caused by a deficiency of galactocerebrosidase (GALC) activity, resulting in the intracellular accumulation of psychosine, which is cytotoxic for neuronal cells. Genetically pathogenic mutations result in conformational changes in GALC and disrupt the lysosmal trafficking of cargos, which subsequently accumulate in the endoplasmic reticulum (ER). Recently, ER stress together with the activation of the unfolded protein response (UPR) has been suggested to play a key role in the pathogenesis of LSDs. In this study, we hence investigated whether the UPR is activated in Krabbe disease using COS-7 cells expressing pathogenic GALC mutants and skin fibroblasts (SFs) from Krabbe disease patients with various phenotypes, using a combination of semiquantitative and quantitative real-time polymerase chain reactions. We found that UPR activation in Krabbe disease depends on the mutations and cell types, and there is the possibility that multiple pathways, involving ER chaperones, inositol-requiring kinase 1, and protein kinase regulated by RNA-like ER kinase are activated by mutations associated with the infantile form. These results indicate that in Krabbe disease, each misfolded/unfolded protein evokes different UPR activation depending on the mutation, and that the activated pathways affect the phenotypes.


Assuntos
Galactosilceramidase/genética , Leucodistrofia de Células Globoides/genética , Mutação , Resposta a Proteínas não Dobradas , Animais , Células COS , Pré-Escolar , Chlorocebus aethiops , Estresse do Retículo Endoplasmático , Genótipo , Humanos , Lactente , Leucodistrofia de Células Globoides/metabolismo , Pessoa de Meia-Idade , Fenótipo , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Transfecção , Tunicamicina/farmacologia
18.
Sci Rep ; 7(1): 3552, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615637

RESUMO

Vici syndrome (VICIS) is a rare, autosomal recessive neurodevelopmental disorder with multisystem involvement characterized by agenesis of the corpus callosum, cataracts, cardiomyopathy, combined immunodeficiency, developmental delay, and hypopigmentation. Mutations in EPG5, a gene that encodes a key autophagy regulator, have been shown to cause VICIS, however, the precise pathomechanism underlying VICIS is yet to be clarified. Here, we describe detailed clinical (including brain MRI and muscle biopsy) and genetic features of nine Japanese patients with VICIS. Genetic dissection of these nine patients from seven families identified 14 causative mutations in EPG5. These included five nonsense, two frameshift, three splicing, one missense, and one multi-exon deletion mutations, and two initiation codon variants. Furthermore, cultured skin fibroblasts (SFs) from two affected patients demonstrated partial autophagic dysfunction. To investigate the function of EPG5, siRNA based EPG5 knock-down, and CRISPR/Cas9 mediated EPG5 knock-out HeLa cells were generated. EPG5-depleted cells exhibited a complete block of autophagic flux caused by defective autophagosome-lysosome fusion. Unexpectedly, endocytic degradation was normal in both VICIS SFs and EPG5 depleted cells, suggesting that EPG5 function is limited to the regulation of autophagosome-lysosome fusion.


Assuntos
Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Autofagossomos/metabolismo , Catarata/genética , Catarata/patologia , Lisossomos/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas/genética , Povo Asiático , Proteínas Relacionadas à Autofagia , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Células Epiteliais/patologia , Saúde da Família , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Músculos/patologia , Mutação , Proteínas de Transporte Vesicular
19.
Methods Mol Biol ; 1594: 141-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28456980

RESUMO

Selective autophagy recognizes specific targets, including damaged mitochondria (mitophagy), aggregated proteins (aggrephagy), and invading bacteria (xenophagy) to engulf by isolation membrane, and degrades toxic materials within lysosomes. We recently revealed that a membrane-damaged lysosome itself also becomes a target of autophagy and named this process lysophagy. In this chapter, we describe methods for monitoring lysophagy; detecting lysosomal damage by staining of galectin and study the subsequent autophagic process in cultured mammalian cells.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Animais , Autofagia/genética , Humanos , Membranas Intracelulares/metabolismo , Mitofagia/fisiologia , Fagossomos/metabolismo
20.
Hum Mol Genet ; 26(1): 173-183, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013294

RESUMO

Mucopolysaccharidoses (MPS) are a group of genetic deficiencies of lysosomal enzymes that catabolize glycosaminoglycans (GAG). Here we describe a novel MPS-like disease caused by a specific mutation in the VPS33A gene. We identified several Yakut patients showing typical manifestations of MPS: coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, mental retardation, and excess secretion of urinary GAG. However, these patients could not be diagnosed enzymatically as MPS. They showed extremely high levels of plasma heparan sulphate (HS, one of GAG); 60 times the normal reference range and 6 times that of MPS patients. Additionally, most patients developed heart, kidney, and hematopoietic disorders, which are not typical symptoms for conventional MPS, leading to a fatal outcome between 1 and 2-years old. Using whole exome and Sanger sequencing, we identified homozygous c.1492C > T (p.Arg498Trp) mutations in the VPS33A gene of 13 patients. VPS33A is involved in endocytic and autophagic pathways, but the identified mutation did not affect either of these pathways. Lysosomal over-acidification and HS accumulation were detected in patient-derived and VPS33A-depleted cells, suggesting a novel role of this gene in lysosomal functions. We hence propose a new type of MPS that is not caused by an enzymatic deficiency.


Assuntos
Glicosaminoglicanos/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Mutação/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Linhagem , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...